109 research outputs found

    Deletion of DOCK2, a regulator of the actin cytoskeleton in lymphocytes, suppresses cardiac allograft rejection

    Get PDF
    Allograft rejection is induced by graft tissue infiltration of alloreactive T cells that are activated mainly in secondary lymphoid organs of the host. DOCK2 plays a critical role in lymphocyte homing and immunological synapse formation by regulating the actin cytoskeleton, yet its role in the in vivo immune response remains unknown. We show here that DOCK2 deficiency enables long-term survival of cardiac allografts across a complete mismatch of the major histocompatibility complex molecules. In DOCK2-deficient mice, alloreactivity and allocytotoxicity were suppressed significantly even after in vivo priming with alloantigens, which resulted in reduced intragraft expression of effector molecules, such as interferon-γ, granzyme B, and perforin. This is mediated, at least in part, by preventing potentially alloreactive T cells from recruiting into secondary lymphoid organs. In addition, we found that DOCK2 is critical for CD28-mediated Rac activation and is required for the full activation of alloreactive T cells. Although DOCK2-deficient, alloreactive T cells were activated in vitro in the presence of exogenous interleukin-2, these T cells, when transferred adoptively, failed to infiltrate into the allografts that were transplanted into RAG1-deficient mice. Thus, DOCK2 deficiency attenuates allograft rejection by simultaneously suppressing multiple and key processes. We propose that DOCK2 could be a novel molecular target for controlling transplant rejection

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Regulation of intracellular free arachidonic acid in Aplysia nervous system

    Full text link
    We have studied the regulation of arachidonic acid (AA) uptake, metabolism, and release in Aplysia nervous system. Following uptake of [ 3 H]AA, the distribution of radioactivity in intracellular and extracellular lipid pools was measured as a function of time in the presence or absence of exogenous AA. The greatest amount of AA was esterified into phosphatidylinositol (relative to pool size). We found that the intracellular free AA pool underwent rapid turnover, and that radioactive free AA and eicosanoids were released at a rapid rate into the extracellular medium, both in the presence and absence of exogenous AA. Most of the released radioactivity originated from phosphatidylinositol.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48020/1/232_2005_Article_BF01868464.pd

    37th International Symposium on Intensive Care and Emergency Medicine (part 3 of 3)

    Full text link

    Magnesium reverses inhibitory effects of calcium deprivation on coordinate response of 3T3 cells to serum

    No full text
    Deprivation of Ca(2+) in crowded cultures of 3T3 cells inhibits the onset of DNA synthesis. By raising [Mg(2+)] to 15 mM the inhibition produced by Ca(2+) deprivation can be fully overcome. Sparse cultures are not inhibited by a similar deprivation of Ca(2+), and therefore are not stimulated by supranormal [Mg(2+)]. The time course of stimulation of the onset of DNA synthesis by supranormal [Mg(2+)] in low [Ca(2+)] is the same as that produced by serum in physiological concentrations of Ca(2+) and Mg(2+). Concentrations of Mg(2+) > 20 mM in low [Ca(2+)] reverse the stimulation, and [Mg(2+)] ≥ 30 mM kills many cells. In contrast to the stimulation by 15 mM Mg(2+), supranormal [Ca(2+)] has no effect on the onset of DNA synthesis in cultures inhibited by Mg(2+) deprivation, if the formation of insoluble Ca-P(i) complexes is prevented. Neither Na(+) nor K(+) reproduces the effects of Mg(2+). The uptake of uridine is another parameter of the coordinate response of 3T3 cells to serum stimulation that is inhibited by Ca(2+) deprivation, and supranormal [Mg(2+)] also reverses this inhibition. The results support the thesis that the coordinate response of growth and metabolism to external effectors is regulated by the availability of Mg(2+) within the cell and that the inhibitory effects of Ca(2+) deprivation are indirect and caused by a reduction in the availability of Mg(2+)
    corecore